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Abstract

Neural machine translation is one of the most
challenging research areas in natural language
processing. The performance of NMT sys-
tems are highly sensitive to the amount of
available training data. For this reason,
low resource language pairs such as English-
Vietnamese often suffer from lower perfor-
mance. In the scope of this project, we work
on the IWSLT’15 English-Vietnamese transla-
tion task, experiment with different encoder-
decoder architectures, and perform hyperpa-
rameter tuning to maximize NMT model per-
formance. We evaluate our model through two
methods: (1) by replacing out-of-vocabulary
words with 〈UNK〉 tokens and (2) leaving the
original sentence unchanged. With the atten-
tion mechanism proposed by Bahdanau et al.
(2014), we achieved final validation BLEU
scores of 26.56 and 25.37 with methods 1 and
2, respectively.

1 Introduction

Neural machine translation (NMT) involves trans-
lating a source sentence F = f1, . . . , fN into a tar-
get sentence E = e1, . . . eM , where N and M can
be of variable length. Thus, we define any transla-
tion system as:

Ê = mt(F )

which returns a translation hypothesis Ê given a
source sentence F as input. NMT are deemed
to be one of the most popular yet challenging
NLP tasks mostly due to the fluidity of natu-
ral languages that cause problems with capturing
grammatical structures and nuances. There have
been impressive machine translation results for
language pairs such as English-French (Bahdanau
et al., 2014) or English-Chinese (Cheng et al.,
2018), but English-Vietnamese translations face
challenges that mainly stem from low-resource

conditions. In this paper, we seek to improve
these translation efforts for Vietnamese → English
by training the IWSLT’15 English-Vietnamese
dataset with a sequence-to-sequence framework
using LSTM and GRU architectures.

Recurrent Neural Networks Machine transla-
tion tasks involve variable length sequences which
can be modeled by recurrent neural networks
(RNNs). Unlike feed-forward networks, which
only allow signals to travel in one direction, RNNs
allow outputs to be fed back into the network as in-
puts using loops. Bengio et al. (1994) have shown
that vanilla RNNs fail to capture long-term depen-
dencies due to exploding (less likely) or vanish-
ing gradients (more likely) during gradient-based
learning. Special types of RNNs have been intro-
duced, such as Long Short-Term Memory (LSTM)
proposed by Hochreiter and Schmidhuber (1997)
and Gated Recurrent Units (GRUs) proposed by
Cho et al. (2014) to overcome these long-term de-
pendencies.

Sequence to Sequence Learning As men-
tioned, general feed forward networks do not have
the flexibility to map sequences to sequences. The
seq2seq model was introduced by Sutskever et al.
(2014) and aims to transform an input source se-
quence to an output target sequence, where both
sequences can be of arbitrary lengths. The seq2seq
model consists of an encoder which processes and
compresses an input sequence into a fixed length
context vector, and a decoder which extracts the
output sequence from that context vector. The
encoder and decoder networks are RNNs, gener-
ally LSTMs or GRUs, which are jointly trained to
maximize the probability of a correct translation
given a source sequence.

Attention Mechanism The major pitfall of the
basic encoder-decoder architecture (known as “the



RNN Training RNN Layers Optimizer Beam Size BLEU (UNK) BLEU (No UNK)
LSTM w/o Attn 1 SGD 3 10.36 9.87
LSTM w/o Attn 2 SGD 3 11.21 10.70
LSTM w/o Attn 3 SGD 3 11.60 11.04
LSTM w/o Attn 1 SGD 5 9.91 9.42
LSTM w/o Attn 2 SGD 5 11.60 11.12
LSTM w/o Attn 3 SGD 5 11.98 11.35
GRU w/o Attn 1 SGD 3 9.91 9.42
GRU w/o Attn 2 SGD 3 11.07 11.64
GRU w/o Attn 3 SGD 3 12.29 11.63
GRU w/o Attn 1 SGD 5 10.05 9.62
GRU w/o Attn 2 SGD 5 11.92 11.29
GRU w/o Attn 3 SGD 5 12.10 11.48
LSTM Attn 1 SGD 3 24.61 23.43
LSTM Attn 2 SGD 3 25.73 24.54
LSTM Attn 3 SGD 3 26.53 25.35
LSTM Attn 1 SGD 5 24.80 23.61
LSTM Attn 2 SGD 5 25.73 24.40
LSTM Attn 3 SGD 5 26.56 25.37
GRU Attn 1 SGD 3 23.50 22.32
GRU Attn 2 SGD 3 24.02 22.80
GRU Attn 3 SGD 3 24.65 23.35
GRU Attn 1 SGD 5 23.37 22.23
GRU Attn 2 SGD 5 23.50 22.80
GRU Attn 3 SGD 5 24.62 23.30

Table 1: Hyperparameter search shows Attention dramatically improves validation BLEU scores. Best models for
Attention and w/o Attention are bolded. GRU and LSTM RNNs show similar results with LSTM having slight
edge in performance, on average.

bottleneck problem”) stems from the fixed length
context vector. The context vector is a numeri-
cal summary of an input sequence and it would
be unreasonable to expect that this one vector rep-
resentation would be able to decode longer in-
put sequences, and this would eventually lead to
catastrophic forgetting. The attention mechanism,
which automatically (soft-) searches for parts of
the source sequence that are relevant to predicting
the target sequences, overcomes this issue (Bah-
danau et al., 2014).

2 Data

We trained our model on the IWSLT’15
English-Vietnamese Dataset - a parallel English-
Vietnamese corpus from The Stanford NLP
Group1 that was compiled through the transcrip-
tion and translation of TED and TEDx talks, i.e.
public speeches covering many different topics.
The training data contains 133,317 sentence pairs,
while the validation and test sets consist of 1,268
and 1,553 pairs, respectively.

1https://nlp.stanford.edu/projects/
nmt/

3 Related Work

Koehn and Knowles (2017) found that NMT per-
forms poorly without a large training corpora. The
lack of a well-sized parallel corpora for English-
Vietnamese tasks have provided practical chal-
lenges to neural based approaches. However, there
has been a few experimental projects that have
used the IWSLT’15 dataset for similar machine
translation tasks.

Vietnamese Sequence Learning Luong and
Manning (2015) developed a baseline NMT model
that uses sequence-to-sequence RNNs that are
trained end-to-end on a large corpora. It is based
on the encoder-decoder framework that uses con-
ditional probability to translate the target words as
they come up. When trained with a small English-
Vietnamese dataset, the model performed quite
well despite having only a few LSTM layers. We
will compare our BLEU score with this model,
which achieved a score of 26.4.

Further Vietnamese NMT Phan-Vu et al.
(2018) helped improve English-Vietnamese trans-
lations by building the largest open Vietnamese-
English corpus and conducted extensive exper-
iments for BLEU score optimization for low-

https://nlp.stanford.edu/projects/nmt/
https://nlp.stanford.edu/projects/nmt/


resource language pairs. They experimented with
and combined various NMT architectures, in-
cluding RNN, Transformer, and Convolutional
sequence-to-sequence (ConvS2S) with tuned hy-
perparameters and achieved a BLEU score of
40.01 and 35.81 for the English-Vietnamese and
Vietnamese-English translations, respectively.

4 Models

Encoder-Decoder RNN For our NMT architec-
ture, we used an encoder-decoder RNN model and
experimented with both bi-directional LSTMs and
GRUs for our encoder block. LSTMs are com-
posed of a cell state, an input gate, a forget gate,
and an output gate (Hochreiter and Schmidhuber,
1997). The input gate regulates how much of the
new cell state to keep, the forget gate regulates
how much of the existing memory to forget, and
the output gate regulates how much of the cell state
should be exposed to the next layers of the net-
work.

Unlike LSTMs, GRUs do not have cell states,
but instead use hidden states to transfer informa-
tion. GRUs have two gates – an update gate and a
reset gate (Cho et al., 2014). The update gate (sim-
ilarly to the forget and input gates of an LSTM)
regulates which information to discard and which
additional information to add, while the reset gate
regulates how much prior information to forget.
GRUs have been shown to produce similar perfor-
mance with LSTMs and, due to their less complex
internal structure, are less computationally expen-
sive (Chung et al., 2014).

Encoder-Decoder RNN with Attention To
boost performance, we also implemented an ad-
ditive attention module (Bahdanau et al., 2014)
to incorporate into our decoder block. Attention
mechanisms are designed to allow the decoder to
directly access all of the encoder’s hidden states,
as opposed to only accessing the context vector
output of the encoder. This results in shorter de-
pendencies in our computation graph as we have a
more direct connection between each of the tokens
that we are decoding and each of the input tokens.

With an attention mechanism, the decoder takes
in three inputs at each timestep t: the previous
timestep’s hidden state st−1, the previous output
of the decoder yt−1, and the context vector ct,
which is a weighted average of the encoder’s hid-
den states hi for i = 1, 2, ..., n (since the encoder
is a bidirectional LSTM, each hi is a concatena-

tion of both the forward and backward hidden state
vectors). The attention weights of ct (denoted as
αi for i = 1, 2, ..., n) are the outputs of a softmax
layer performed on a predetermined scoring func-
tion that measures the alignment between each hi
and st−1.

5 Experiments

Methodology The NMT models were trained
for 15 epochs each on the NYU’s High Perfor-
mance Computing (HPC) Prince Cluster. The ini-
tial learning rate is set to 0.25 for the SGD opti-
mizer and 1e-5 for Adam, with a minimum thresh-
old of 1e-4 to reduce the learning rate when the
validation loss plateaus by a factor of 0.5.

The performance of the trained models are mea-
sured by their BLEU scores (Papineni et al.), and
evaluated on two differently tokenized versions of
the validation and test sets. In method 1: BLEU
(UNK), all out-of-vocabulary (OOV) words are re-
placed with an 〈UNK〉 token, whereas in method 2:
BLEU (No UNK), we keep the original reference
sequence as is. With method 1, we are able to pre-
dict more n-grams correctly and thus generate a
slightly higher BLEU score. This is because when
we encounter an OOV word in the test set, we will
predict 〈UNK〉 rather than predicting a token highly
likely to be a mismatch.

Evaluation For our models, the prediction re-
quired is a sequence of words. Thus the model first
outputs a probability distribution over each word
in the target vocabulary for each word in the out-
put sequence, then the decoder is left to transform
these probabilities to a final sequence of words.
For evaluation of these decoded sentences, we aim
to avoid sub-optimal translations. Ideally, we want
to select the target word with maximum proba-
bility based on the input sentence at each time
step, but choosing only one best candidate (Greedy
Search) at each time step may not be suitable, be-
cause when constructing the full sentence, some
of the times we may need other candidates from
previous time steps to have a more accurate trans-
lation.

To overcome sub-optimal translations, we im-
plement beam search, which selects more than one
alternative (based on the set beam size) for the best
target word at a given time step based on condi-
tional probability. After selecting b best candi-
dates at each time step, we make a new vocabu-
lary which consists of all the previous candidates,



Figure 1: First figure shows the complications with 〈UNK〉 tokenized examples. Second figure shows small gram-
matical issues that arise from our translation model. Third figure is an example of a good machine translation.

as well as the current candidates. Next, we keep on
predicting one word at a time until the beam search
picks 〈EOS〉 as the final token. A higher value of
beam size would give a more accurate translation,
but it is computationally more expensive. Hence,
we keep our beam sizes at 3 and 5.

Figure 2: Increasing beam size from 3 → 5 show
marginal improvements to BLEU scores. Attention
mechanism outperforms w/o Attention through all sen-
tence lengths.

Results Our model with the best results was
structured with a bi-LSTM encoder (3 layers, hid-
den dimension of 512) and a LSTM decoder (3
layers, hidden dimension of 1024, with attention)
that was evaluated with a validation beam size of
5. The model resulted in a validation BLEU score
of 26.56 (UNK) and 25.37 (No UNK). From Fig-
ure 2, we can see that increasing beam size shows
only marginal improvements, but adding in the at-
tention mechanism gives a significant boost to the
validation BLEU scores.

6 Error Analysis

Figure 1 highlights some sample translations from
our machine translation model. In general, OOV
words in the source sentence are problematic for
our model. This arises when a word in the source
language doesn’t meet the minimum count of 5, or
does not exist in the target vocabulary. Because
the word is not learned by the model, the decoder
will fail to predict it or will miss out on some
information from the source sentence. Addition-
ally, our model fails to recognize small grammat-
ical nuances, but the main meaning is preserved.
From Figure 2, it is evident that our model per-
forms better on short sentences (with a maximum
BLEU score of around 5 words per sentence) and
struggles more on longer sentences.

7 Future Work

NMT has shown SOTA results with convo-
lutional sequence-to-sequence and transformer
based models. Phan-Vu et al. (2018) experi-
mented with ensemble methods, combining pairs
of techniques mentioned above which improved
their BLEU score significantly. We would like to
extend our research by experimenting with such
ensembles of NNs and performing additional hy-
perparameter tuning such as exploring additional
beam sizes. Additionally, we hope to try a phrase-
based segmenter approach (Luong and Manning,
2015), as well as BPE tokenization to verify if the
decoder performs well on logo-graphic languages
such as Vietnamese and Chinese.
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