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Abstract

As machine learning systems become ubig-
uitous, methods for understanding and inter-
preting these models are increasingly impor-
tant. In particular, practioners are often inter-
ested in both what features the model relies
on and how the model relies on them — the
feature’s impact on model predictions. Pre-
vious work on feature impact including par-
tial derivative plots and individual conditional
expectation (ICE) plots has focused on a vi-
sual interpretation of feature impact. To ad-
dress shortcomings in ICE, we propose sev-
eral modifications for visual clarity and com-
putational efficiency. To quantify feature im-
pact, we also introduce ICE feature impact, a
model-agnostic, performance-agnostic feature
impact metric extracted from ICE plots. Addi-
tionally, we introduce an in-distribution vari-
ant of ICE feature impact to reduce the influ-
ence of out-of-distribution points. To assess
utility, we conduct an experiment comparing
ICE feature impact with random forest feature
importance scores in a real-world dataset.

1 Introduction

As machine learning (ML) systems have become
ubiquitous in human decision making, their
transparency and interpretability have grown
significantly in importance (Varshney, 2016).
Interpretability and trusting the model are es-
pecially important when decisions have notable
consequences but performance is also crucial—
leading to black box models. Some systems
may not require explanations due to low-risk
nature such as movie recommender systems.
But in other cases, knowing the “why” can help
you learn more about the problem, the data, and
the reason why a model might fail (Molnar, 2019).

The three phases to interpreting and “trust-
ing” a model are strong performance, model

understanding, and prediction understanding (See
Figure 1). To distinguish a feature’s contribution
to model performance from a feature’s contri-
bution to model predictions, we call the former
“feature importance” and the latter “feature
impact” as defined by Parr et al. (2020).

Partial dependency plots (PDPs) (Friedman,
2001) are a visual technique to understanding fea-
ture impact on a global, aggregated level, whereas
Individual Conditional Expectation (ICE) (Gold-
stein et al., 2014) plots address the weakness
of PDP’s tendency to aggregate away divergent
effects by plotting the individual observations.
The aforementioned methods visually display
heterogenous relationships between features
and predictions but fail to provide quantifiable
insights. To understand the impact of a feature,
the feature’s individual plot must be visually
inspected, which becomes infeasible for larger
data sets.

In this paper, we extend ICE plots by ex-
tracting feature impact metrics from them (“ICE
feature impact”). The feature impact metric we
introduce is model- and performance-agnostic,
meaning it measures the impact of each feature
solely on the prediction, without regards to the
accuracy of that prediction. Additionally, we
introduce an in-distribution version of feature im-
pact to reduce the influence of out-of-distribution
points. An implementation is available in Github'.

In Section 2, we discuss related work on
both feature importance and feature impact. In
Section 3, we discuss ICE in detail and propose
modifying ICE to denote in-distribution ranges.
In Section 4, we define ICE feature impact and in-
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Figure 1: Three stages in model trust

distribution ICE feature impact. In Section 5, we
provide examples of our extension on real data. In
Section 6, we conclude with a discussion of ICE
feature impact’s utility in model interpretation.

2 Related Work

2.1 Partial Dependency Plot

First introduced by Friedman (2001), partial de-
pendency plots (PDPs) illustrate the relationships
between one or more input variables and the pre-
dictions of a black-box model. More specifically,
PDPs plot the average effect of a feature and are
model-agnostic. To formally define PDP, let the
subset of at-issue features be S € {1,...,p} and
the complement subset be C' = S¢. We can then
define x g as the feature(s) for which the partial de-
pendence function should be plotted and x¢ as the
complement features in the model. Feature sets
x g and x¢ comprise of the entire feature space X.
Then, the partial dependence function of f on xg
is given by:

fis = Bxclf(xs x0)] = [ (s xc)dP(xo)

)
Partial dependence works by marginalizing the
model output over features xc, such that the
function shows the relationship between target
features xg and the predicted outcome. By
marginalizing over features xc, we get a function
that depends only on features xg.

The partial function fg is estimated by cal-
culating averages in the training data denoted in
Equation 2.
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The partial function fg tells us, for a given value
of features x g, the average marginal effect on pre-
(%)

diction; x denotes the actual feature values for

the features we are not interested in; /N denotes the
size of the data set.

2.2 Individual Conditional Expectation

Goldstein et al. (2014) provide an extension of
PDP by introducing Individual Conditional Ex-
pectation (ICE) plots. While partial dependence
plots provide the average effect of a feature, ICE
plots are a method to disaggregate these averages
to visualize the functional relationship between
the predicted response and the feature separately
for each observation. In other words, ICE plots
disaggregate the PDP into its component individ-
ual lines.

To provide a formal definition, we use the
same definitions as in Section 2.1. Given feature
matrix X € RV*?_ fitted model f, and the subset
of features to compute partial dependence on xg,
ICE returns f (1), e féN), the estimated partial
dependence curves for constant values of x¢.

ICE curves provide more interpretability than
classical PDPs as one line represents the predic-
tions for one instance if we vary the feature of
interest. Additionally, ICE curves can uncover
heterogenous relations, which PDPs fail to do.

2.3 Nonparametric Feature Impact

Although feature importance is a widely used
measure to determine the strength of predictors in
a model, the results may vary when the same al-
gorithm is run on a different model. Thus, Parr
et al. (2020) distinguished the idea of a nonpara-
metric “feature impact” to measure the effect of
each feature on the response variable based on the
raw data, while utilizing PDPs much like ICE. Un-
like LIME (Ribeiro et al., 2016), a similar model-
agnostic technique that uses an interpretable surro-
gate model to approximate the feature impact on a
local scale around the prediction, the measure pro-
posed by Parr et al. does not use predictions from
a fitted model.



Given feature matrix X € RV*P observed fea-
tures y € RV*!, generator function f : R? — R,
Parr et al. (2020) define nonparametric feature im-
pact (STRATIMPACT) as a function of its partial
dependence curve, where the isolated contribution
of each feature x; at z to response y is derived
from the partial derivative of f with respect to x;:

PDj(zj = z) = / o drj  (3)

min(x;) 871"]

In contrast to other methods that use the partial
derivative of a fitted model to calculate the ef-
fect of individual features such as ALE, the ide-
alized partial dependence (STRATPD), as shown
in Equation 3, integrates over the generator func-
tion, highlighting the dependence on just training
data, and not the model (Apley and Zhu, 2019).
Then, STRATIMPACT is defined as the area un-
der the magnitude of x;’s STRATPD for numerical
features (approximated by a Riemann sum):

max X

IMPACT; = / . |PDj(x;)|dx;
min 3

> |PDj(x;)|6x;,
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and ratio of the magnitude of x;’s mean-centered
STRATPD to the total for all variables for categor-
ical features:

|PD; — PDj|
> b1 |PDyx — PDj|

CATIMPACT; = (5)

3 ICE
3.1 Replication

To replicate ICE plots, we create “phantom
observations” from each ‘“real observation”
where all non-target features(s) are constant, but
we permute the target feature(s). We then use
the phantom observations to interrogate the model.

The exact algorithm is as follows: for target
feature(s) xg, fitted model f , and feature matrix
X € RN*P_Jet there be nxg unique values of xg
found in the data.

1. For each observation x(i), create nyg obser-
vations with all features the same as in a:(’),

except for xg. Replace xg with the nxg
unique values of feature p found above. This
results in nx4 new observations for each 2,

2. We call the resulting observations “phantom
observations”, denoted (!)[k] which is the
kth phantom observation for z(9 with k& =
1,...,nxg. For each observation 2@ one of
its phantom observations is exactly identical
to 2(), and the others are identical except for
a permuted xg. Combine all n - nxg phantom
observations into a new feature matrix.

3. Use fitted model f to predict ¢ for all phan-
tom observations.

4. For each original observation, plot a line
composed of the corresponding phantom
points with the target feature on the x-axis
and ¢ on the y-axis. This results in n lines,
with each line composed of nxg phantom
points.

Additionally, if n is large, we sample uniformly
from each quantile of xg if xg is continuous and
each value of xg if xg is categorical in order to not
leave out portions of the distribution.

3.2 Closeness Boundaries

One disadvantage of ICE plots is that they do not
indicate parts of the curves that are in-sample vs.
out-of-sample. In Figure 2, which plots ICE for
the age feature from the cervical cancer dataset
explained in Section 5, we overlay green points to
denote original data points and distinguish the re-
gion of the line within 0.5 standard deviations of
the target feature(s) xg as a solid line with the rest
of the range as a dotted line. Together, these make
clear to the viewer the parts of the feature distribu-
tion the model is more or less familiar with.

3.3 I-ICE

For cases where the target feature is continuous
and there are no duplicate values, the standard
algorithm of ICE results in redundancy in the fea-
ture distribution, where many points that are very
close are plotted. Additionally, for datasets with
hundreds of millions or billions of observations,
extracting a list of unique values for each feature
can be prohibitively computationally expensive.

To address this, we propose I-ICE — short
for “linear ICE” — where, for a fixed number of
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Figure 2: ICE plot of cervical cancer probability by
age. Each curve represents one woman. For most
women, the predicted probability of cancer increases
significantly between ages 40 - 50.

phantom observations, all features except for the
target feature are left constant. The target feature
is varied from the minimum value to the maxi-
mum value and is evenly spaced over that interval.
By spacing out the phantom observations, we
reduce redundancy. Since we only require the
minimum and maximum values for each feature,
we can greatly reduce the computational expense
of the ICE algorithm — especially in cases where
the minimum and maximum values are known
beforehand, e.g. by construction in standardized
features or from domain knowledge.

4 Feature Impact

While ICE allows visual inspection of feature im-
pact, it does not output any quantifiable metrics for
comparability or a precise measurement of feature
impact. We introduce two methods to extract fea-
ture impact from ICE plots.

4.1 ICE Feature Impact

For the sequence of points that make up each
observation-curve, we calculate the change in
prediction divided by the change in feature (du )
for each consecutive point. This quantifies the
impact of the feature on the prediction value.

We introduce a feature impact metric as the
mean of all the absolute values of all z values.
This mean is taken over all points that make
up an observation-line and all observations. To
account for features of different scales, we can
multiply by the standard deviation of that feature.
Feature impact has an analogous interpretation to
coefficients in a linear model.

For feature xg, let oy, denote the standard

deviation of xg, let n be the number of obser-
vations, nx, be the number of unique values
of xg (or fixed parameter in 1-ICE), z(*) be the
value of x in observation i, z()[k] be the value
of x for phantom observation k corresponding to
observation ¢, and ¢ be the predicted output of the
model given x (and all other features constant for
observation 7). Then, the feature impact is:

n Mxg

xa) = dj(zD[k])
FI( S) n- ”xsf ;k - d{Lg [k ’
&8 AZ(L k]) — Ok —1
~ s ZZ [ Z/( [k ])’
xs i=1 k=2 [k 1]
(6)

The feature impact of xg can be interpreted as the
change in the predicted value of ¢ for each one-
unit change in xg if xg was normalized to a stan-
dard deviation of 1 and all other features remained
constant. An additional interpretation of ICE fea-
ture impact analogous to Parr et al. (2020) is that
it is the average of the Riemann Sums of all of the
ICE observation-curves.

4.2 In-Distribution ICE Feature Impact

One of the drawbacks of the ICE feature impact
introduced in Section 4.1 is that it weights evenly
across all points, no matter their likelihood of oc-
currence in the true feature distribution. This may
be concerning if features are highly correlated,
and permuting the target feature xg takes us out
of the feature distribution, e.g., taking the health
data from a 9 year old and changing the age to 70
while leaving the other features untouched would
give us a phantom observation that would most
likely never occur in reality.

This is a missing data problem with the missing
value being the likelihood of the observation.
The likelihood is 1 for all true observations and
missing for all phantom observations. Let us
denote the likelihood of phantom observation
2@ [k] for target feature xg with Ly, (x®[k]).
Then, given this likelihood, the in-distribution
ICE feature impact of xg is:

n Nxg
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To estimate Ly (z([k]), we introduce a -
smoothed, linear parametrization of feature dis-
tance. The likelihood of a phantom feature occur-
ring in the real data is assumed to be linked to the
distance between the values of the target feature of
the phantom observation and the real observation,
e.g. for the feature impact of age, permuting age
from 9 to 10 results in a more likely observation
than permuting the age from 9 to 70. In order to
prevent the likelihood of the “most distant” phan-
tom observation from going to zero, we smooth
with hyperparameter A:

(1 - K - xy)

max(xg) — min(xg)

Lyg (zW[k]) =1 - + A

®)

where the distance between the phantom x(;) [k]
and original value X(S?) is normalized for scale by
the full range of xg in the training distribution.

The in-distribution ICE feature impact weights
phantom observations closer to the real obser-
vation more heavily when measuring feature
impact.

S Experiment with Cervical Cancer Data

To examine ICE feature impact, we compare tra-
ditional feature importances to the feature impact
results for a cervical cancer dataset.”> The dataset
contains medical information for 858 patients
from Hospital Universitario de Caracas. There
are 32 numerical and binary features including
age, number of pregnancies, and use of IUD.
The target variable is Biopsy, which is a binary
variable.

For this experiment, we first trained a ran-
dom forest classifer on the dataset and obtained
the trained model’s impurity-based feature impor-
tances. We then created ICE plots with closeness
boundaries for the model and extracted the ICE
feature impact as described in Section 3.2 and
Section 4.1. We normalize the ICE feature impact
to sum to 100 to make it comparable to the random
forest feature importance®. Table 1 shows the

2Cervical Cancer (Risk Factors) Data Set contains a de-
tailed description of the dataset.
3See Appendix A for the ICE plots for every feature.
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Figure 3: ICE Plot for Hepatitis ICE. Though the ma-
jority of the line looks flat, under close inspection,
many of the observation curves show a slight rise in
the line near the beginning of the feature range.

five features with the largest absolute differences
between the random forest feature importance and
the ICE feature impact values.*

5.1 STDs:Hepatitis B

Indicator feature STDs:Hepatitis B has a
random forest feature importance value of 0.13
and a normalized feature impact value of 15.5,
a 119x larger impact than importance. The ICE
plot for this feature in Figure 3 also looks flat
and would not pass for a highly predictive vari-
able on a first pass visual inspection. Neither
feature importance nor ICE plots would highlight
STDs:Hepatitis B as an important or im-
pactful variable. However, the high feature impact
becomes clear when you consider the distribution
of features displayed in Table 2. When the fea-
ture was missing, the mean value of 0.001 was im-
puted. The missingness of STDs:Hepatitis
B in this case is predictive of cancer, and because
there is such a small gap between 0 and 0.001, the
dxg is extremely small, magnifying the impact of
this feature, likely because of a response bias in
the feature. The feature impact metric highlights a
potentially impactful feature that both feature im-
portance and ICE plots would dismiss and poten-
tially discard from the model.

5.2 Age

In contrast, Age has a much higher feature
importance than feature impact. Age has a
random forest feature importance of 17.61, the

*See Appendix C for the full feature impact table and Ap-
pendix B for a histogram of the non-zero feature impacts for
all features in the data.
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Feature Impact

Feature Importance

Feature Base In-Distribution Normalized Random Forest Difference
Age 0.15 0.15 1.26 17.61 -16.35
STDs:Hepatitis B 1.80 1.60 15.54 0.13 15.41
STDs:genital 1.85 1.62 15.98 0.94 15.04
herpes

STDs:molluscum 1.65 1.46 14.19 0.17 14.03
contagiosum

STDs:pelvic  in- 1.60 1.42 13.74 0.12 13.62

flammatory disease

Table 1: Feature impact table for features in cervical cancer dataset with largest difference between feature impor-

tance and impact.

Value Count
0 752
0.001 105
1 1

Table 2: Hepatitis B value counts.

highest among all features in the model: it is
the feature that contributes most strongly to the
redution in the Gini index. The ICE plot for Age
shows widely varied effects, also suggesting its
importance in model predictions compared to the
ICE plots of other features in Appendix B.

However, consult the feature impact table,
and it is clear that Age does not necessarily
have a much stronger impact on predictions
than many of the other features: there are nine
features that are more impactful than Age on
cancer prediction. The more impactful features
are sparser than Age and therefore contribute less
to model performance, but contribute more to the
model prediction.

A practitioner who confused the feature im-
portance with feature impact or only used ICE
plots for a visual inspection of feature impact
may get the mistaken impression that Age is
the most important factor in predicting cancer,
when in fact it is only the 10th most important
factor. Its strong predictiveness is likely linked to
lower response bias compared to more predictive
factors, as opposed to superior insight.

6 Discussion

To build on efforts to interpret machine learning
models, we propose several extensions to ICE
plots to deepen the user’s understanding on the
impact of features on model predictions.

Our extensions of overlaying closeness bound-
aries and I-ICE address respectively highlighting
in- versus out-of-distribution ranges in the feature
distribution and the computational cost and
redundancy from relying on unique values of a
feature as in the original ICE algorithm.

Additionally, we propose the ICE feature
impact and in-distribution ICE feature impact
which have similar interpretations to linear
coefficients. These metrics measure how much
each feature contributes to the model’s prediction
as opposed to the model’s performance, with the
in-distribution ICE feature impact also weighting
impact by likelihood of being in-distribution.
In Section 5, we find that our metric provides
additional intuition when analyzed in conjunc-
tion with feature importance and can highlight
extremely impactful features that both feature
importance metrics and a visual inspection of ICE
plots miss. More specifically, we find that feature
impact scores can be much higher than feature
importance when the feature has high impact
on prediction when it occurs but suffers from
sparsity or missingness. On the other hand, higher
feature importance than impact is indicative of a
feature that contributes strongly to the model’s
performance but does not have as strong an impact
on the model’s predictions. From this, feature
importance and feature impact are both imperative



and complementary for model interpretation.
Moreover, high feature importance should not be
confused with high feature impact.

For future work, we could explore alterna-
tive methods of estimating the propensities of
phantom values for the target feature based on
the actual distribution of values in the data rather
than a simple linear relationship between the
actual value and the phantom value. We could
also extend this to other datasets or simulated
datasets to sense-check the feature impact metric
in different contexts.
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Appendices

A ICE Algorithm

Algorithm 1: ICE Algorithm: Given (1) X, the IV x p feature matrix, (2) f , the fitted model, (3)
S € {1,...p}, the subset of features to compute partial dependence on, (4) C' = S, subset of
complement features.

function ICE (X, f, S,C):
Uxg < unique(X[S])
Nxg < len(uxg)
fori < 1,...,Ndo
fg) +— Onx1
xo < X[i, C] > fix X¢
for / < 1,...,nx, do
Xg 4 Uxg[/] > vary Xg
fgé) — f([xs,xc)) > the ith curve’s fth coordinate
end

end

return [fél), e féN)]
end function
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Figure 4: ICE plots for all features in cervical cancer dataset.
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D Full Feature Impact Table for Cervical Cancer Data

Feature Impact

Feature Importance

Feature Base In-Distribution Normalized Random Forest Difference
STDs:Hepatitis B 1.80 1.60 15.54 0.13 15.41
STDs:genital herpes 1.85 1.62 15.98 0.94 15.04
STDs:molluscum contagiosum 1.65 1.46 14.19 0.17 14.03
STDs:pelvic inflammatory dis- 1.60 1.42 13.74 0.12 13.62
ease

STDs:HPV 1.01 0.89 8.66 0.16 8.50
STDs:vaginal condylomatosis 0.44 0.39 3.82 0.22 3.60
STDs:syphilis 0.12 0.10 1.03 0.41 0.61
Smokes (packs/year) 0.45 0.47 3.85 3.58 0.26
STDs:cervical condylomatosis 0.00 0.00 0.00 0.00 0.00
STDs:AIDS 0.00 0.00 0.00 0.00 0.00
STDs:condylomatosis 0.04 0.03 0.34 0.59 -0.25
STDs:vulvo-perineal condylo- 0.04 0.03 0.35 0.60 -0.25
matosis

STDs 0.02 0.01 0.17 0.56 -0.38
STDs:HIV 0.08 0.07 0.72 1.15 -0.43
Dx:CIN 0.08 0.02 0.65 1.20 -0.55
STDs: Number of diagnosis 0.01 0.01 0.08 0.66 -0.58
STDs (number) 0.03 0.03 0.24 1.11 -0.86
Dx:Cancer 0.07 0.01 0.59 1.64 -1.05
Dx:HPV 0.06 0.01 0.52 1.60 -1.08
Dx 0.07 0.01 0.61 1.76 -1.15
Smokes 0.03 0.02 0.24 1.41 -1.17
IUD (years) 0.29 0.34 2.52 3.88 -1.36
IUD 0.06 0.05 0.53 1.89 -1.36
STDs: Time since last diagnosis  0.03 0.03 0.23 1.78 -1.55
STDs: Time since first diagnosis  0.03 0.04 0.30 1.89 -1.59
Hormonal Contraceptives 0.02 0.01 0.14 2.84 -2.69
Smokes (years) 0.10 0.11 0.88 3.90 -3.02
First sexual intercourse 0.89 0.98 7.69 12.48 -4.78
Number of sexual partners 0.09 0.10 0.80 9.92 -9.11
Num of pregnancies 0.08 0.09 0.66 10.06 -9.40
Hormonal Contraceptives  0.43 0.45 3.67 15.75 -12.08
(years)

Age 0.15 0.15 1.26 17.61 -16.35

Table 3: Feature impact table for all features in cervical cancer dataset.



